Abstract

This report addresses the nature of population coding in sensory cortex by applying information theoretic analysis to data recorded simultaneously from neuron pairs located in primary somatosensory cortex of anaesthetised rats. We studied how cortical spike trains code for the location of a whisker stimulus on the rat's snout. We found that substantially more information was conveyed by 10 ms precision spike timing compared with that conveyed by the number of spikes counted over a 40 ms response interval. Most of this information was accounted for by the timing of individual spikes. In particular, it was the first post-stimulus spikes that were crucial. Spike patterns within individual cells played a smaller role; spike patterns across cells were negligible. This pattern of results was robust both to the exact nature of the stimulus set and to the precision at which spikes were binned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.