Abstract

A photochemical box model has been used to model themeasured diurnal ozone cycle in spring at Jungfraujochin the Swiss Alps. The comparison of the modelleddiurnal ozone cycle with the mean measured diurnalozone cycle in spring, over the period 1988–1996,shows a good agreement both with regard to the shapeand amplitude. Ozone concentrations increase duringthe daytime and reach a maximum at about 16:00–17:00(GMT) in both the modelled and the mean observed ozonecycle, indicative of net ozone production during thedaytime at Jungfraujoch in spring. The agreement isbetter when the modelled ozone cycle is compared withthe mean measured diurnal cycle (1988–1996) filteredfor north-westerly winds >5 m/s (representative ofregional background conditions at Jungfraujoch). Inaddition to ozone, the modelled diurnal cycle of[HO2] + [CH3O2] also shows rather goodagreement with the mean diurnal cycle of the peroxyradicals measured during FREETEX '96, a FREETropopsheric Experiment at Jungfraujoch in April/May1996. Furthermore, this mean diurnal cycle of the sumof the peroxy radicals measured during FREETEX '96 isused to calculate, using steady-state expressions, therespective diurnal cycle of the OH radical. Thecomparison of the OH diurnal cycle, calculated fromthe peroxy radical measurements during FREETEX '96,with the modelled one, reveals also good agreement.The net ozone production rate during the day-time is0.27 ppbv h-1 from the model, and 0.13 ppbvh-1 from the observations during FREETEX '96. Theobservations and model results both suggest that thediurnal ozone variation in spring at Jungfraujoch isprimarily of photochemical origin. Furthermore, theobserved and modelled positive net ozone productionrates imply that tropospheric in situphotochemistry contributes significantly to theobserved high spring ozone values in the observedbroad spring-summer ozone maximum at Jungfraujoch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.