Abstract
The exact mechanism of hypothermia-induced neuroprotection has not been determined yet; however, we hypothesized that it may be mediated by a blood glutamate-scavenging effect. Here, we examine the effect of hypothermic conditions (mild, moderate, and deep) on blood glutamate levels in naive rats. To identify the mechanism of hypothermia-induced glutamate reduction, we also measured concentrations of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), the primary regulators of glutamate concentration in blood. Rats were anesthetized with isoflurane, and their rectal temperature was maintained for 6 hours at 36 to 37°C, 33 to 36°C, 30 to 32°C, 18 to 22°C, or was not maintained artificially. At 6 hours, active cooling was discontinued and rats were allowed to rewarm. There were 12 rats in each group for a total of 60 rats. Blood samples were drawn at 0, 3, 6, 12, 24, and 48 hours for the determination of blood glutamate, GOT, and GPT levels. A strong correlation between body temperature and blood glutamate levels was observed (P<0.001). Mild (33 to 36°C) and moderate (30 to 32°C) hypothermia led to reduced blood glutamate levels (P<0.001). Deep hypothermia (18 to 22°C) was associated with significant elevations in blood glutamate levels (P<0.001). Hypothermia, irrespective of the degree, led to elevations in GOT in plasma (P<0.001). Mild and moderate hypothermia led to a reduction in blood glutamate levels in rats, whereas deep hypothermia was associated with a significant elevation in blood glutamate levels. We further demonstrated an elevation of GOT and GPT levels, supporting their involvement in reducing blood glutamate by the conversion of glutamate to 2-ketoglutarate. We suggest that the neuroprotective properties of hypothermia may be partially because of a blood glutamate-scavenging mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.