Abstract
AbstractSeveral lines of evidence, including hydrous melt inclusions and unusually Cl-rich apatite, have been used to suggest that the reappearance of olivine and PGE-sulfide of the J-M Reef in the Stillwater Complex, Montana, is due to fluid infiltration and hydration melting. This study builds upon the hydration melting model using the programs MELTS and PELE with Stillwater bulk rock compositions for the original protolith. Cl-bearing phases are not modeled by MELTS and thus simple oxide mixtures of either a pure H2O or a H2O + Na2O “faux brine” are added to norite, gabbronorite, and melanorite protoliths at 1050 °C at 2 kbar pressure, conditions for which the nominally “dry” protolith is > 95% solid. Incongruent hydration melting results in up to 37% olivine produced in the melanorite. The olivine Fo content is a function of the partial melt retained on cooling, and ranges between 76 and 86, overlapping the natural range of olivine compositions observed in the rocks. Modeling with the PELE program, which includes a silicate liquid Cl component, sulfur species, and a more complex C-O–H-S fluid, suggests that, for CO2-rich fluids, fluid metal concentrations on the order of 25 ppm Pt, 75 ppm Pd, 0.03 wt.% Cu, and 0.20 wt.% Ni at a fluid/rock mass ratio of ~ 0.25 are needed to account for the observed ore grades. Sulfide and ore metals are readily remobilized for more H2O-rich fluids, consistent with heterogeneous distribution of sulfide and regionally variable ore grades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.