Abstract

Abstract The hydrophobic interaction arises from the ordered structure of water around nonpolar groups of molecules in an aqueous solvent. Because biological systems are made of various macromolecules and amphiphiles which are suspended in aqueous solution, the hydrophobic interaction plays a very important role in the formation of higher-order structure and phase transitions in biological systems. Considering the hydrophobic interaction, the van der Waals interaction and the entropic effect, an equation of state of a lipid membrane was obtained which was analogous to the van der Waals equation. The characteristics of the lipid bilayer phase transition as well as the phase behaviors of a lipid monolayer were explained by this equation of state. Experimental evidence was obtained from ultrasonic measurements which indicated that its phase transition accompanys significant critical phenomena. Analysis of the hydrophobicity of amino acid sequences revealed that the morphology of the proteins was determined b...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.