Abstract
AbstractIn microemulsion formulations, linker molecules are additives that can enhance the surfactant‐oil interaction (lipophilic linkers) or the surfactant‐water interaction (hydrophilic linkers). In this paper, the role of the hydrophilic linker is elucidated through solubilization studies, interfacial tension studies, and by studying the partitioning of the hydrophilic linker into an optimum middle phase. This research used alkyl naphthalene sulfonates as the hydrophilic linkers, sodium dihexyl sulfosuccinate as the surfactant, and trichloroethylene as the oil phase. The hydrophilic linkers were found to have interfacial properties between a hydrotrope and a cosurfactant. More specifically, the data show that a hydrophilic linker is an amphiphile that coadsorbs with the surfactant at the oil/water interface but that has negligible interaction with the oil phase. The role of the hydrophilic linker can thus be interpreted as opening “holes” in the interface. Based on the characteristics of alkyl naphthalene linkers, carboxylic molecules were evaluated as hydrophilic linkers. For trichloroethylene microemulsions, sodium octanoate was found to be an alternative hydrophilic linker to sodium mono‐ and dimethyl naphthalene sulfonates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.