Abstract

Over the past few decades, hydrous minerals were thought to be absent in the lower mantle, due to their instability at high-pressure conditions. Recently, however, hydrous phases including phase H (MgSiO_4H_2), pyrite-type FeOOH, and delta-AlOOH have been discovered to be thermodynamically stable at lower mantle pressures. Investigations using ab initio calculations methods play a key role in identifying these novel phases and determining their geophysical properties (i.e., compressibility, elasticity, and sound velocities). These calculations suggest that the hydrous minerals which are stable at lower mantle pressure conditions (i.e., phase H, FeOOH, and AlOOH), have symmetric hydrogen bonds at these pressures. This indicates that hydrogen bond strength is closely connected to the stability and physical properties of hydrous minerals at extreme pressures. In this review, we summarize the theoretical and experimental studies of hydrous minerals stable at the high-pressure conditions of the Earth’s lower mantle in light of the role of hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.