Abstract

New-particle formation from condensable acid and base molecules is a ubiquitous phenomenon in the atmosphere. The role of water in salt particle formation is not fully understood as it can stabilize or destabilize cluster structures, which leads to non-linear effects on cluster formation dynamics. In the studied systems, increased relative humidity can enhance the particle formation for up to four orders of magnitude in the case of nitric acid, but it can also slightly reduce the particle formation in the cases of sulfuric acid and methanesulfonic acid. As the effect of relative humidity in salt particle formation varies many orders of magnitude depending on the acid and base molecules, neglecting hydration or using the same value for different systems may introduce remarkable inaccuracies in large-scale models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.