Abstract

This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Futuristic unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator can control multiple dissimilar vehicles connected through a decentralized network. Significant human-automation collaboration will be needed because of automation brittleness, but such collaboration could cause high workload. Three increasing levels of replanning were tested on an existing multiple unmanned vehicle simulation environment that leverages decentralized algorithms for vehicle routing and task allocation in conjunction with human supervision. Rapid replanning can cause high operator workload, ultimately resulting in poorer overall system performance. Poor performance was associated with a lack of operator consensus for when to accept the automation's suggested prompts for new plan consideration as well as negative attitudes toward unmanned aerial vehicles in general. Participants with video game experience tended to collaborate more with the automation, which resulted in better performance. In decentralized unmanned vehicle networks, operators who ignore the automation's requests for new plan consideration and impose rapid replans both increase their own workload and reduce the ability of the vehicle network to operate at its maximum capacity. These findings have implications for personnel selection and training for futuristic systems involving human collaboration with decentralized algorithms embedded in networks of autonomous systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.