Abstract

Human breast milk (HBM) is the main source of nutrition for neonates across the critical early-life developmental period. The highest demand for energy is due to rapid neurophysiological expansion post-delivery, which is largely met by human milk lipids (HMLs). These HMLs also play a prebiotic role and potentially promote the growth of certain commensal bacteria, which, via HML digestion, supports the additional transfer of energy to the infant. In tandem, HMLs can also exert bactericidal effects against a variety of opportunistic pathogens, which contributes to overall colonisation resistance. Such interactions are pivotal for sustaining homeostatic relationships between microorganisms and their hosts. However, the underlying molecular mechanisms governing these interactions remain poorly understood. This review will explore the current research landscape with respect to HMLs, including compositional considerations and impact on the early life gut microbiota. Recent papers in this field will also be discussed, including a final perspective on current knowledge gaps and potential next research steps for these important but understudied breast milk components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.