Abstract

To investigate the possible role of glycosylase action in causing tumor resistance, a full-length, histidine-tagged human alkyladenine glycosylase has been purified from the cloned human gene contained in a pTrc99A vector propagated in a tag alkA mutant Escherichia coli. This human enzyme releases both 3-methyladenine and 7-methylguanine from methylated DNA but in contrast to previous studies of the bacterial AlkA glycosylase, it does not release any adducts from [(3)H]chloroethylnitrosourea-modified DNA. This finding suggests that the alkyladenine DNA glycosylase-dependent resistance to the toxic effects of the chloroethylnitrosoureas reported previously in the literature may occur by a mechanism other than through direct glycosylase action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.