Abstract

BackgroundBatoids exhibit unique body plans with derived fin morphologies, such as the anteriorly expanded pectoral fins that fuse to the head, or distally extended anterior pelvic fin lobes used for a modified swimming technique utilized by skates (Rajidae). The little skate (Leucoraja erinacea), exhibits both of these unique fin morphologies. These fin modifications are not present in a typical shark body plan, and little is known regarding the mechanisms underlying their development. A recent study identified a novel apical ectodermal ridge (AER) associated with the development of the anterior pectoral fin in the little skate, but the role of the posterior HoxA genes was not featured during skate fin development.ResultsWe present the first evidence for HoxA expression (HoxA11 and HoxA13) in novel AER domains associated with the development of three novel fin morphologies in a representative batoid, L. erinacea. We found HoxA13 expression associated with the recently described novel AER in the anterior pectoral fin, and HoxA11 expression in a novel AER domain in the anterior pelvic fin that we describe here. We find that both HoxA11 and HoxA13 are expressed in claspers, and while HoxA11 is expressed in pelvic fins and claspers, HoxA13 is expressed exclusively in developing claspers of males. Finally, HoxA11 expression is associated with the developing fin rays in paired fins.ConclusionOverall, these results indicate that the posterior HoxA genes play an important role in the morphological evolution of paired fins in a representative batoid. These data suggest that the batoids utilize a unique Hox code, where the posterior HoxA genes exhibit distinct expression patterns that are likely associated with specification of novel fin morphologies.

Highlights

  • Batoids exhibit unique body plans with derived fin morphologies, such as the anteriorly expanded pectoral fins that fuse to the head, or distally extended anterior pelvic fin lobes used for a modified swimming technique utilized by skates (Rajidae)

  • At stage 30, HoxA13 expression is concentrated in the anterior pectoral fin (Fig. 2d) in a region that has been described as a novel apical ectodermal ridge (AER) based on Wnt3 expression [20]

  • HoxA genes are relatively understudied and we provide evidence that the posterior HoxA genes play distinct roles in two novel AERs during skate fin development, one of which is newly described here

Read more

Summary

Introduction

Batoids exhibit unique body plans with derived fin morphologies, such as the anteriorly expanded pectoral fins that fuse to the head, or distally extended anterior pelvic fin lobes used for a modified swimming technique utilized by skates (Rajidae). The little skate (Leucoraja erinacea), exhibits both of these unique fin morphologies These fin modifications are not present in a typical shark body plan, and little is known regarding the mechanisms underlying their development. Half of all cartilaginous fishes exhibit a modified body plan that is dorsoventrally flattened, with large pectoral fins that expand anteriorly and fuse to the head or rostrum (Batoidea). A compelling focus of evolutionary developmental studies has been the evolution of modified appendages such as the fin to limb transition, and these studies have highlighted co-option of ancestral genetic regulatory networks (GRNs) that were present in the common ancestor of jawed vertebrates as a primary mechanism in the evolution of body plan disparity [3, 4], including novel deployments of HoxA/D patterning genes.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call