Abstract

An electron-counting strategy starting from magnesium boride was used to show the inevitability of hexagonal holes in 2D borophene. The number (hole density, HD) and distribution of the hexagonal holes determine the binding energy per boron atom in monolayer borophenes. The relationship between binding energy and HD changes dramatically when the borophene is placed on a Ag(111) surface. The distribution of holes in borophenes on Ag(111) surfaces depends on the temperature. DFT calculations show that aside from the previously reported S1 and S2 borophene phases, other polymorphs may also be competitive. Plots of the electron density distribution of the boron sheets suggest that the observed STM image of an S2 phase corresponds to a sheet with a HD of 2/15 instead of a sheet with a HD of 1/5. The hole density and the hole distribution echo the distribution of vacancies and extra occupancies in complex β-rhombohedral boron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.