Abstract

In this paper, the fundamental advantage of highly conductive transparent polymers as hole transport layers in hybrid solar cells is demonstrated. The substantial efficiency improvement of hybrid n-type silicon (n-Si)/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells by adding organic solvents to the polymer dispersion is investigated, and a model that explains reasons and mechanisms for that improvement is given. Open-circuit voltages of 600 mV were measured, which are comparable to conventional diffused silicon pn-junction wafer cells. It is shown by means of X-ray photoelectron spectroscopy that the PEDOT versus PSS ratio plays an important role for charge carrier transport in the PEDOT:PSS layer as well as for charge carrier separation at the n-Si/PEDOT:PSS interface. A shell of insulating PSS segregates at the surface of PEDOT:PSS grains and represents a considerable barrier for charge carrier transport and charge carrier separation, influencing the conductivity of the ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call