Abstract

Inflammation mediators play a regulatory role in repair processes. The study will examine the influence of histamine on wound fibroblast metabolic activity, viability, proliferation, and TGFβ1 secretion. The study also will identify the histamine receptor involved in regulation of the tested repair processes. Fibroblasts were obtained from the granulation tissue of wounds or intact dermis of rats. The MTT and BrdU assays were used to examine the effect of histamine (10-8M-10-4M) on the viability and metabolic activity of fibroblasts, and on their proliferative capacity. The influence of histamine receptor antagonists (i.e., ketotifen, ranitidine, ciproxifan and JNJ7777120) and agonists (2-pyridylethlamine dihydrochloride, amthamine dihydrobromide) was also investigated. The TGFβ1 and histamine receptors H1 were evaluated by enzyme-linked immunosorbent assay. Histamine significantly increased granulation tissue fibroblast viability and metabolic activity at 10-8 and 10-6M but did not change their proliferative activity. Only the blockade of the H1 receptor removed this effect of histamine. H1 receptor agonist (2-pyridylethlamine dihydrochloride) increased cell viability, thereby mimicking histamine action. Both Histamine (10-4M) and 2-pyridylethlamine dihydrochloride increased TGFβ1 concentration in cell culture medium. However, ketotifen blocked histamine-induced augmentation of TGFβ1. H1 receptor expression on wound fibroblasts was confirmed. The regulatory influence of histamine on wound fibroblast function (viability/metabolic activity or secretion of TGFβ1) is dependent on H1 receptor stimulation. Contrary to wound fibroblasts, these cells express a very low level of H1 receptors when isolated from intact dermis and histamine is unable to modify their metabolic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.