Abstract
Copper interaction with alpha synuclein (αS) has been shown to accelerate aggregation and oligomerization of the protein. Three different αS copper binding domains have been proposed: (i) the N-terminal residues (1-9) that represent the minimal copper binding domain; (ii) the His-50 imidazole and (iii) the Asp and Glu residues within the acidic C-terminal domain. The copper coordination at the N-terminus has been extensively characterized and it is generally accepted that it provides the highest affinity site. The same does not hold for the role played by His-50 in copper binding. In this work Cu(ii) coordination to peptide fragments encompassing residues 45-55 of αS has been exhaustively characterized, including systems containing the inherited mutations E46K and A53T, as model peptides of the His-50 site. Through potentiometric titrations all the speciation profiles have been determined and the stability constants have been used to estimate the dissociation constants of complexes corresponding to the binding modes at pH 6.5 and 7.5. Spectroscopic analyses allowed determination of (i) the copper coordination sphere, (ii) its geometry and (iii) the constraints wherefrom the 3D structural models of the copper complexes could be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.