Abstract

This paper expands the emerging literature on volatility forecasting for China's oil market by exploring the predictive ability of higher-order moments (skewness, kurtosis, hyperskewness, and hyperkurtosis) based on high-frequency data. Our investigation is originally based on the heterogeneous autoregressive (HAR) framework, but considering the possible multicollinearity and nonlinearity, it is extended to various machine learning (ML) models and combination forecasting models. The results reveal that higher-order moments, including the two highest moments, always significantly improve predictive performance for the COVID-19 crisis. We further examine the interpretability of ML models and each factor's contribution to the prediction, finding that odd and even moments contain short- and long-term prediction information, respectively. This paper also highlights the effectiveness of ML models for capturing trends in oil futures volatility with higher-order moments and the satisfactory performance of combination forecasting models. Finally, we investigate the predictability of asymmetric risk patterns and obtain identical results. Our study has important implications for financial risk management, asset pricing, and portfolio allocation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.