Abstract
The fractures in brown coal influence fluid flow and deformation in these materials. These fractures display highly heterogeneous characteristics in the distributions of their apertures, separations and orientations. While discrete fracture models have previously been used to analyse the effects of fractures, such models are not feasible for the scales encountered in many brown-coal mines. Instead, here a continuum permeability model is used to capture the effects of the fracture heterogeneity on fractured coal. This paper presents an analysis of the fracture heterogeneity of brown coal at the AGL Loy Yang coal mine in Latrobe Valley and its influence on the fluid flow, dispersion and rock stability. A stress dependent fracture permeability is considered and captures the effects of heterogeneity in the fracture aperture and orientation. Numerical simulations conducted with multiple plasticity models present different flow paths and potential failure modes depending on the the implemented boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Minerals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.