Abstract

Cardiac innervation by the parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS) modulates the heart rate (HR) (chronotropic activity) and the contraction of the cardiac muscle (inotropic activity). The peripheral vasculature is controlled only by the SNS, which is responsible for peripheral vascular resistance. This also mediates the baroreceptor reflex (BR), which in turn mediates blood pressure (BP). Hypertension (HTN) and the autonomic nervous system (ANS) are closely related, such that derangements can lead to vasomotor impairments and several comorbidities, including obesity, hypertension, resistant hypertension, and chronic kidney disease. Autonomic dysfunction is also associated with functional and structural changes in target organs (heart, brain, kidneys, and blood vessels), increasing cardiovascular risk. Heart rate variability (HRV) is a method of assessing cardiac autonomic modulation. This tool has been used for clinical evaluation and to address the effect of therapeutic interventions. The present review aims (a) to approach the heart rate (HR) as a CV risk factor in hypertensive patients; (b) to analyze the heart rate variability (HRV) as a "tool" to estimate the individual risk stratum for Pre-HTN (P-HTN), Controlled-HTN (C-HTN), Resistant and Refractory HTN (R-HTN and Rf-HTN, respectively), and hypertensive patients with chronic renal disease (HTN+CKD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.