Abstract
AbstractIn spite of decades of research on the subject, the crystal structure of illite is still poorly understood. The purpose of this study was to address this problem by investigating the nature of the interlayer content in illite IMt-2 from Silver Hill, Montana, using analytical transmission electron microscopy (ATEM), thermogravimetry (TG), and X-ray powder diffraction (XRPD) analyses. The ATEM data, together with literature and TG results, yielded the formula K0.70a0.01(H2O)0.42 (Al1.53Fe2+0.06Fe3+0.19Mg0.28)Σ−2.06(Si3.44Al0.56)O10(OH)2 or, assuming the presence of H3O+, K0.69Na0.01(H3O)+0.28(Al1.47Fe2+0.06Fe3+0.19Mg0.28)Σ−1.99(Si3.40Al0.60)O10(OH)2. The first formula indicates surplus interlayer and octahedral species, whereas the second shows no excess. The XRPD data were refined by Rietveld techniques, down to an Rp factor of 10.48–13.8%. The mineral composition consists largely of illite-2M1, illite-1M, and minor quartz. Although the refinement accuracy is limited by the intrinsic poor quality diffraction of the illites, the partially refined model is consistent with the chemical composition; in particular, attempts to introduce octahedral cations in excess of 2 were fruitless. All the results support the simple structural model, by which the illite structure strictly corresponds to a dioctahedral mica with H3O+ replacing K. As a consequence, the crystalchemical formula of illites should be calculated on the basis of six tetrahedral plus octahedral cations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.