Abstract

Glutamatergic transmission may play a critical role in the pathogenesis of Parkinson's disease (PD). Electroacupuncture (EA) has been demonstrated to effectively alleviate PD symptoms. In this study, a potential glutamate-dependent mechanism underlying the therapeutic action of EA was investigated. The effects of EA stimulation on motor behaviors, dopamine contents, glutamate release, and group II metabotropic glutamate receptor (mGluR2/3) expression in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats were examined. Unilateral 6-OHDA lesions of the nigrostriatal system caused a marked increase in glutamate content in the ipsilateral cortex and striatum. mGluR2/3 protein expression and mGluR3 mRNA expression were reduced in the striatum. Noticeably, prolonged EA stimulation at 100 Hz significantly reversed these changes in the striatal glutamate system. Behaviorally, EA improved the motor deficits induced by 6-OHDA lesions. Intrastriatal infusion of an mGluR2/3 antagonist APICA blocked the improving effect of EA. These data collectively demonstrate that the group II mGluR-mediated glutamatergic transmission in the striatum is sensitive to dopamine depletion and may serve as a substrate of EA for mediating the therapeutic effect of EA in a rat model of PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call