Abstract

Conventional building materials (CBMs) made from non-renewable resources are the main source of indoor air contaminants, whose impact can extend from indoors to outdoors. Given their sustainable development (SD) prospect, green building materials (GBMs) with non-toxic, natural, and organic compounds have the potential to reduce their overall impacts on environmental and human health. In this regard, biocomposites as GBMs are environmentally friendly, safe, and recyclable materials and their replacement of CBMs reduces environmental impacts and human health concerns. This study aims to develop a model of fully hybrid bio-based biocomposite as non-structural GBMs and compare it with fully petroleum-based composite in terms of volatile organic compound (VOC) emissions and human health impacts. Using a small chamber test (American Society for Testing and Materials (ASTM)-D5116) for VOC investigation and SimaPro software modeling with the ReCiPe method for evaluating human health impacts. Life cycle assessment (LCA) methodology is used, and the results indicate that switching the fully hybrid bio-based biocomposite with the fully petroleum-based composite could reduce more than 50% impacts on human health in terms of indoor and outdoor. Our results indicate that the usage of biocomposite as GBMs can be an environmentally friendly solution for reducing the total indoor and outdoor impacts on human health.

Highlights

  • The construction industry (CI) is one of the firmest emergent sectors in rapid urbanization due to the increasing population in urban areas [1]

  • The movement of conventional building materials to green materials tried to reduce the total impacts on human health in indoor and outdoor

  • Green composite or biocomposite as green building materials (GBMs) are bio-based, healthy, and recyclable, which progress the total quality of life

Read more

Summary

Introduction

The construction industry (CI) is one of the firmest emergent sectors in rapid urbanization due to the increasing population in urban areas [1]. This urban population has rapidly grown from 751 million (1950) to 4.2 billion (2018) in the world [2]. The affluence of this urbanization makes this industry the most astonishing consumer of materials, most of them from non-renewable resources that need replenishing [3]. Public Health 2020, 17, 2589; doi:10.3390/ijerph17072589 www.mdpi.com/journal/ijerph

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call