Abstract
A high-quality 3D seismic volume from offshore Espirito Santo Basin (SE Brazil) is used to assess the importance of gravitational collapse to the formation of crestal faults above salt structures. A crestal fault system is imaged in detail using seismic attributes such as curvature and variance, which are later complemented by analyses of throw vs. distance (T-D) and throw vs. depth (T-Z). In the study area, crestal faults comprise closely spaced arrays and are bounded by large listric faults, herein called border faults. Two episodes of growth are identified in two opposite-dipping fault families separated by a transverse accommodation zone. Statistical analyses for eighty-four (84) faults show that fault spacing is < 250 m, with border faults showing the larger throw values. Fault throw varies between 8 ms and 80 ms two-way time for crestal faults, and 60–80 ms two-way time for border faults. Fault length varies between ∼410 m and 1750 m, with border faults ranging from 1250 m to 1750 m. This work shows that border faults accommodated most of the strain associated with salt growth and collapse. The growth history of crestal faults favours an isolated fault propagation model with fault segment linkage being associated with the lateral propagation of discrete fault segments. Importantly, two episodes of fault growth are identified as synchronous to two phases of seafloor erosion, rendering local unconformities as competent markers of fault reactivation at a local scale. This paper has crucial implications for the understanding of fault growth as a means to assess drilling risk and oil and gas migration on continental margins. As a corollary, this work demonstrates that: 1) a certain degree of spatial organisation occurs in crestal fault systems; 2) transverse accommodation zones can form regions in which fault propagation is enhanced and regional dips of faults change in 4D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.