Abstract

The effect of grain boundary misorientation on the intergranular cracking behavior of pure Ni-16Cr-9Fe was assessed by determining if low-angle boundaries (LABs) or coincident site lattice boundaries (CSLBs) are more crack resistant than general high-angle boundaries (GHABs) in argon and high-purity water. Cracking susceptibility of boundary types was determined using constant extension rate tensile tests (CERTs) in 360 °C argon and in deaerated, high-purity water. Annealed samples contained 12 to 20 pct CSLBs, while CSLB-enhanced samples contained 27 to 44 pct CSLBs; GHAB proportions varied accordingly. Cracked boundary fractions for CSLB-enhanced samples tested in either environment ranged from 0.01 to 0.08, while those for annealed samples ranged from 0.07 to 0.10, indicating that samples with increased proportions of CSLBs are more crack resistant. No LABs cracked in either environment. In annealed samples, the proportion of CSLBs that cracked in water was 6.7 pct compared to 1.5 pct in argon; the proportion of GHABs that cracked in water was 9.3 pct compared to 6.6 pct for argon. Thus, CSLBs are more crack resistant than GHABs in either environment, and both are more crack resistant in argon than in water. The higher amounts of cracking and the higher CSLB cracking susceptibility in high-purity water indicate the presence of an environmental effect on cracking behavior. The beneficial effect of LABs and CSLBs is likely due to the ability of these boundaries to induce slip in neighboring grains by either transmitting or absorbing and re-emitting lattice dislocations, thereby reducing grain boundary stresses and the propensity for crack initiation. The results indicate that control of grain boundary proportions can improve the intergranular stress corrosion cracking susceptibility of pure Ni-16Cr-9Fe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call