Abstract

Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling.

Highlights

  • The extracellular space provides an important milieu for the regulation of signaling by Wnt and Hedgehog (Hh) morphogens

  • We provide evidence that the vertebrate homolog of Shifted, Wnt Inhibitory Factor-1 (Wif1), inhibits Wnt activity by a similar mechanism, reinforcing interactions between Wnts and glypicans in a manner that sequesters Wnts from their receptors

  • We examine the structural basis for the specificities of Wif1 and Shifted for Wnt and Hh signaling, respectively, and provide evidence that Wif1, a potent inhibitor of Wnt activity, influences D. melanogaster Hh signaling

Read more

Summary

Introduction

The extracellular space provides an important milieu for the regulation of signaling by Wnt and Hedgehog (Hh) morphogens. Several factors are known that bind secreted Wnts or Hhs and regulate either their extracellular levels, their movement through tissues, or their access to receptors. Members of the Wnt Inhibitory Factor-1 (WIF1) family of secreted proteins are unusual, because they can impact either the Wnt or Hh pathways. This study investigates the mechanism of vertebrate WIF1 action, and the basis of the different activities of the vertebrate and D. melanogaster WIF1 family proteins. Human WIF1 (NCBI Gene ID: 11197) binds vertebrate Wnts and the D. melanogaster Wnt Wingless (Wg, NCBI Gene ID: 34009) and, in gain-of-function assays, WIF1 inhibits vertebrate Wnt and D. melanogaster Wg signaling [1,3,4,5,6,7]. Morpholino-induced knockdown of wif in zebrafish (Danio rerio) embryos results in shortening along the anterior-posterior axis, defective somites and increased canonical Wnt signaling in the developing swimbladder [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call