Abstract

The phosphoglucose isomerase mutant of the respiratory yeast Kluyveromyces lactis (rag2) is forced to metabolize glucose through the oxidative pentose phosphate pathway and shows an increased respiratory chain activity and reactive oxygen species production. We have proved that the K. lactis rag2 mutant is more resistant to oxidative stress (OS) than the wild type, and higher activities of glutathione reductase (GLR) and catalase contribute to this phenotype. Resistance to OS of the rag2 mutant is reduced when the gene encoding GLR is deleted. The reduction is higher when, in addition, catalase activity is inhibited. In K. lactis, catalase activity is induced by peroxide-mediated OS but GLR is not. We have found that the increase of GLR activity is correlated with that of glucose-6-phosphate dehydrogenase (G6PDH) activity that produces NADPH. G6PDH is positively regulated by an active respiratory chain and GLR plays a role in the reoxidation of the NADPH from the pentose phosphate pathway in these conditions. Cytosolic NADPH is also used by mitochondrial external alternative dehydrogenases. Neither GLR overexpression nor induction of the OS response restores growth on glucose of the rag2 mutant when the mitochondrial reoxidation of cytosolic NADPH is blocked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.