Abstract

The scientific literature has demonstrated that glutamine is one of the main beneficial amino acids. It plays an important role in gut microbiota and immunity. This paper provides a critical overview of experimental studies (in vitro, in vivo, and clinical) investigating the efficacy of glutamine and its effect on gut microbiota. As a result of this review, we have summarized that glutamine could affect gut microbiota via different mechanisms including the reduction in the ratio of Firmicutes to Bacteroidetes, with the activation of NF-κB and PI3K-Akt pathways, reducing the intestinal colonization (Eimeria lesions) and bacterial overgrowth or bacterial translocation, increasing the production of secretory immunoglobulin A (SIgA) and immunoglobulin A+ (IgA+) cells in the intestinal lumen, and decreasing asparagine levels. The potential applications of glutamine on gut microbiota include, but are not limited to, the management of obesity, bacterial translocation and community, cytokines profiles, and the management of side effects during post-chemotherapy and constipation periods. Further studies and reviews are needed regarding the effects of glutamine supplementation on other conditions in humans.

Highlights

  • Glutamine is the most abundant free amino acid in the human body that is utilized by the intestinal endothelium

  • The importance of glutamate in nitrogen metabolism in enteric bacteria such as Bacteroides thetaiotaomicron is well documented, and it has been hypothesized that plasma and fecal levels of glutamate are influenced by the composition of the gut microbiota [3]

  • A study by Newsholme et al [7] was the first to demonstrate that glutamine is essential for lymphocyte proliferation and production of cytokines

Read more

Summary

Introduction

Glutamine is the most abundant free amino acid in the human body that is utilized by the intestinal endothelium. The importance of glutamate in nitrogen metabolism in enteric bacteria such as Bacteroides thetaiotaomicron is well documented, and it has been hypothesized that plasma and fecal levels of glutamate are influenced by the composition of the gut microbiota [3]. Some functional amino acids, such as tryptophan and glutamine, have beneficial effects on the gut-associated immune system through the modulation of key metabolic signaling pathways in the intestinal barrier, often involving crosstalk with their receptors or ligands [5]. More studies on the intestinal microbiota are needed to broaden our understanding of underlying mechanisms of dietary amino acids in metabolic processes in humans and animals

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.