Abstract

ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained byNR3C1gene variation.Structural T1-weighted images were acquired on a 3T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed.After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium withNR3C1variants that present well-characterized physiological functions.The literature-reported associations of ADHD with accumbens and amygdala were only observed for specificNR3C1genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call