Abstract

Application of Geographical Information System (GIS) for identifying the spatial locations of uranium exploration target areas using multi-disciplinary geoscientific data is presented in this paper. The data sets used in this study are Airborne Gamma Ray Spectrometric (AGRS), Aeromagnetic (AM), Satellite images, regional ground gravity and geochemical surveys over one of the promising mobile Proterozoic Kunjar-Darjing Basins to the west of Singhbum Uranium Province (SUP), Odisha, India. Analysis of the geochemical data indicated unconformity related uranium mineralization along the unconformity between Kunjar-Darjing sediments and the S-type per-aluminous Tamparkola granite with labile uranium. All the data sets are processed and interpreted independently in terms of geology based on characteristics such as intensity, frequency and texture of the images generated. Various ratio maps generated from AGRS data were used as training points for spatial modeling by building relationships (topology) with the structures and geology interpreted from the magnetic and gravity datasets. Index overlay method is adapted in spatial modeling. The study shows that integrating the geological, geophysical, geochemical and other geodata in a GIS environment provides valuable guidelines for geological mapping as well as identifying target areas for uranium exploration. The GIS study facilitated in identifying potential target areas for uranium exploration along the regional faults D1 and D2 around the villages Kelo, Tamra, northeast of Kunjar, Nuarali and Betajharan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call