Abstract

People frequently gesture when problem-solving, particularly on tasks that require spatial transformation. Gesture often facilitates task performance by interacting with internal mental representations, but how this process works is not well understood. We investigated this question by exploring the case of mental abacus (MA), a technique in which users not only imagine moving beads on an abacus to compute sums, but also produce movements in gestures that accompany the calculations. Because the content of MA is transparent and readily manipulated, the task offers a unique window onto how gestures interface with mental representations. We find that the size and number of MA gestures reflect the length and difficulty of math problems. Also, by selectively interfering with aspects of gesture, we find that participants perform significantly worse on MA under motor interference, but that perceptual feedback is not critical for success on the task. We conclude that premotor processes involved in the planning of gestures are critical to mental representation in MA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.