Abstract

Gel-type polymer electrolytes based on the copolymer poly(ethylene oxide-co-epichlorohydrin) and the plasticizer γ-butyrolactone (GBL) were optimized and applied in dye-sensitized solar cells. The plasticizer added to the electrolyte allowed the dissolution of a higher concentration of salt, reaching conductivity values close to 1 mS cm −1 for the sample prepared with 30 wt% of LiI. Raman spectroscopy confirmed polyiodide formation in the electrolyte when the salt concentration exceeds 7.5 wt%, introducing a significant contribution of electronic conductivity in the electrolyte. The devices were characterized under AM 1.5 conditions and the I– V curves were fitted using a two diode equation. Increasing the concentration of LiI-I 2 accelerates dye cation regeneration as measured by transient absorption spectroscopy; however, it also contributes to an increase in the dark current of the cell by one order of magnitude. The best performance was achieved for the solar cell prepared with the electrolyte containing 20 wt% of LiI, with efficiencies of 3.26% and 3.49% at 100 and 10 mW cm −2 of irradiation, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.