Abstract
Abstract Interacting galaxies favour the formation of star clusters but are also suspected to affect their evolution through an intense and rapidly varying tidal field. Treating this complex behaviour remains out-of-reach of (semi-)analytical studies. By computing the tidal field from galactic models and including it into star-by-star N-body simulations of star clusters, we monitor the structure and mass evolution of a population of clusters in a galaxy major merger, taking the Antennae galaxies (NGC 4038/39) as a prototype. On the long time-scale (∼109 yr), the merger only indirectly affects the evolution of clusters by modifying their orbits in or around the galaxies: the mass-loss of clusters in the merger remnant is faster, while clusters ejected in the tidal debris survive much longer, compared to in an isolated galaxy. The tidal perturbations of the galactic collisions themselves are too short lived and not strong enough to significantly influence the structure and dissolution of realistically dense/massive star clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Monthly Notices of the Royal Astronomical Society: Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.