Abstract
The phenotypes of a series of mutant human immunodeficiency virus type 1 proviruses with linker insertion and deletion mutations within the gag coding region were characterized. These mutants, with mutations in the matrix, capsid, and p2 coding regions, produced replication-defective virion particles with defects in the early steps of the viral life cycle. To investigate this phenotype further, the abilities of mutant virion particles to enter T cells, initiate and complete reverse transcription, and transport the newly transcribed proviral DNA were investigated. Only 4 of 10 of the mutants appeared to make wild-type levels of viral DNA. Biochemical analyses of the mutants revealed the middle region of CA as being important in determining virion particle density and sedimentation in velocity gradients. This region also appears to be critical in determining the morphology of mature virion particles by electron microscopy. Particles with aberrant morphology were uninfectious, and only those mutants which displayed cone-shaped cores were capable of carrying out the early steps of the viral life cycle. Thus, the normal morphology of human immunodeficiency virus type 1 appears to be critical to infectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.