Abstract

Heterotrimeric G-proteins influence almost all aspects of plant growth, development, and responses to biotic and abiotic stresses in plants, likely via their interaction with specific effectors. However, the identity of such effectors and their mechanism of action are mostly unknown. While investigating the roles of different G-protein subunits in modulating the oil content in Camelina (Camelina sativa), an oil seed crop, we uncovered a role of Gβ proteins in controlling anisotropic cell expansion. Knockdown of Gβ genes causes reduced longitudinal and enhanced transverse expansion, resulting in altered cell, tissue, and organ shapes in transgenic plants during vegetative and reproductive development. These plants also exhibited substantial changes in their fatty acid and phospholipid profiles, which possibly leads to the increased oil content of the transgenic seeds. This increase is potentially caused by the direct interaction of Gβ proteins with a specific patatin-like phospholipase, pPLAIIIδ. Camelina plants with suppressed Gβ expression exhibit higher lipase activity, and show phenotypes similar to plants overexpressing pPLAIIIδ, suggesting that the Gβ proteins are negative regulators of pPLAIIIδ. These results reveal interactions between the G-protein-mediated and lipid signaling/metabolic pathways, where specific phospholipases may act as effectors that control key developmental and environmental responses of plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.