Abstract

AbstractR. opacus UFZ B 408 is able to use pyridine, a potentially growth‐inhibiting substrate, as the sole source of carbon, energy and nitrogen. In a previous publication [1] we reported that with the simultaneous utilization of a second carbon and energy source in carbon‐substrate‐limited chemostat culture, stable steady states could be achieved at higher dilution rates than with growth on pyridine as the sole substrate. Owing to the higher growth yield during growth on such a substrate mixture, both the specific pyridine consumption rates and the residual pyridine concentrations were lower at similar dilution rates than with growth on pyridine alone. Therefore, the critical growth‐inhibitory pyridine concentration was only achieved at a higher dilution rate.With the investigations presented here in carbon‐substrate‐limited continuous culture, the simultaneous utilization of pyridine and formate by R. opacus UFZ B 408 was studied. The yield coefficient during growth on pyridine as the sole substrate amounted to about 0.55 g dry mass/g pyridine. Theoretically, however, the carbon‐metabolism‐determined yield coefficient should have been about 0.915 g dry mass/g pyridine. Because of the difference between these two values the conclusion was drawn that pyridine is energetically deficient. That means that during growth on pyridine a part of the substrate was dissimilated to supply the energy required for the incorporation of the pyridine carbon into biomass. Formate cannot be used as a carbon source for growth by R. opacus UFZ B 408. However, with growth on pyridine, formate was oxidized simultaneously. During growth on pyridine/formate mixtures, the yield coefficient could be enhanced up to 0.7 g dry mass/g pyridine. That means that biologically usable energy, generated in the course of the formate oxidation, was used for the assimilation of pyridine carbon. The increase in the yield coefficient was related to the utilization ratio of formate to pyridine in a linear manner. However, the carbon‐metabolism‐determined yield coefficient of 0.915 g dry mass/g pyridine could not be achieved. That can be put down to the fact that R. opacus UFZ B 408 possesses only a limited capacity to oxidize externally supplied formate. Because of the limited formate oxidation capacity the probability is low that, with simultaneous utilization of formate, stable steady states could be achieved at substantially higher dilution rates than with growth on pyridine alone.Enzymatic studies revealed the induction of both NAD(P)+‐linked glutaric dialdehyde dehydrogenase and isocitrate lyase during growth on pyridine. Therefore, the conclusion was drawn that pyridine is metabolized by R. opacus UFZ B 408 via the same pathway described for the utilization of pyridine by Nocardia Z1 [2]. This conclusion implies that the ability to oxidize formate represents a metabolic performance which seems not to be directly related to the pyridine metabolism of R. opacus UFZ B 408.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.