Abstract

Neuroplasticity, which is the ability of the brain to adapt to internal and external environmental changes, physiologically occurs during growth and in response to damage. The brain's response to damage is of particular interest in multiple sclerosis, a chronic disease characterized by inflammatory and neurodegenerative damage to the central nervous system. Functional MRI (fMRI) is a tool that allows functional changes related to the disease and to its evolution to be studied in vivo. Several studies have shown that abnormal brain recruitment during the execution of a task starts in the early phases of multiple sclerosis. The increased functional activation during a specific task observed has been interpreted mainly as a mechanism of adaptive plasticity designed to contrast the increase in tissue damage. More recent fMRI studies, which have focused on the activity of brain regions at rest, have yielded nonunivocal results, suggesting that changes in functional brain connections represent mechanisms of either adaptive or maladaptive plasticity. The few longitudinal studies available to date on disease evolution have also yielded discrepant results that are likely to depend on the clinical features considered and the length of the follow-up. Lastly, fMRI has been used in interventional studies to investigate plastic changes induced by pharmacological therapy or rehabilitation, though whether such changes represent a surrogate of neuroplasticity remains unclear. The aim of this paper is to systematically review the existing literature in order to provide an overall description of both the neuroplastic process itself and the evolution in the use of fMRI techniques as a means of assessing neuroplasticity. The quantitative and qualitative approach adopted here ensures an objective analysis of published, peer-reviewed research and yields an overview of up-to-date knowledge.

Highlights

  • Neuroplasticity, which is the ever-changing adaptation of the brain to new conditions, is a key factor in the pathophysiology of MS, a central nervous system immunity-mediated disease

  • We searched two electronic databases (PubMed and Scopus), according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), using the following terms: plasticity OR neuroplasticity OR reorganization OR reorganisation OR compensatory OR compensation AND multiple sclerosis AND “Functional MRI (fMRI).” The last search was undertaken on the 4th of April 2018, and no restrictions were applied to the article type or time period

  • The main concept that emerges from t-fMRI studies is that adaptive plasticity is a finite process that occurs in the early phases of MS and is aimed at maintaining normal function despite the structural damage but becomes exhausted as the disease progresses

Read more

Summary

Introduction

Neuroplasticity, which is the ever-changing adaptation of the brain to new conditions, is a key factor in the pathophysiology of MS, a central nervous system immunity-mediated disease. The advent of resting-state condition scanning (r-fMRI) has allowed the assessment of functional connectivity (FC), the identification of specific resting-state networks (RSNs), and the evaluation of relevant functional alterations in MS, both within and between networks [5]. In recent years, both t-fMRI and r-fMRI have been used in cross-sectional and longitudinal statistical designs, usually controlled against healthy subjects, either with or without disease-modifying therapy or rehabilitation interventions, to assess disease-specific changes. This is the reason why there are as yet no definitive applications for fMRI findings in clinical decision-making, a breakthrough the neurological community has long been awaiting

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.