Abstract

ObjectiveWith the recent expanded indication for transcatheter aortic valve replacement to low-risk surgical patients, thrombus formation in the neosinus is of particular interest due to concerns of reduced leaflet motion and long-term transcatheter heart valve durability. Although flow stasis likely plays a role, a direct connection between neosinus flow stasis and thrombus severity is yet to be established. MethodsPatients (n = 23) were selected to minimize potential confounding factors related to thrombus formation. Patient-specific 3-dimensional reconstructed in vitro models were created to replicate in vivo anatomy and valve deployment using the patient-specific cardiac output and idealized coronary flows. Dye was injected into each neosinus to quantify washout time as a measure of flow stasis. ResultsFlow stasis (washout time) showed a significant, positive correlation with thrombus volume in the neosinus (rho = 0.621, P < .0001). Neither thrombus volume nor washout time was significantly different in the left, right, and noncoronary neosinuses (P ≥ .54). ConclusionsThis is the first patient-specific study correlating flow stasis with thrombus volume in the neosinus post-transcatheter aortic valve replacement across multiple valve types and sizes. Neosinus-specific factors create hemodynamic and thrombotic variability within individual patients. Measurement of neosinus flow stasis may guide strategies to improve outcomes in transcatheter aortic valve replacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.