Abstract

Abstract The use of the creep T-jump experiment as a sensitive tool for elucidating the mechanistic behavior during the deformation of a complex material such as the carbon black filled elastomer has been illustrated. The activation energy for creep was determined as a function of stress for various vulcanizates. The effects of the choice of elastomer, and of variations in surface chemistry, structure, and loading of the filler, were studied. The T-jump results combined with electrical conductivity measurements confirmed the presence of a carbon black network which is considerably involved in the creep deformation process at low strain but not at high strain. In NR vulcanizates, there is a high-strain mechanism not observed in SBR vulcanizates; presumably strain-induced crystallization is responsible for the NR behavior. Oxidation of filler surfaces had essentially no effect on the creep deformation mechanisms, suggesting that, during creep, slippage of elastomers along the surface does not occur to any great extent for conventional or oxidized surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.