Abstract
This study was undertaken to investigate how fibroblasts respond to stimulation with particulate wear debris and/or conditioned media obtained from pathologic tissue, and whether these activated fibroblasts express compounds that are involved in bone resorption. Conditioned media from explant cultures of synovial tissue, periprosthetic soft tissue (interface membranes), titanium particles, and proinflammatory cytokines were used to stimulate fibroblasts. RNase protection assay was used to measure altered gene expression, and enzyme-linked immunosorbent assay, Western blot hybridization, and flow cytometry were used to determine fibroblast protein expression. Tartrate-resistant acid phosphatase staining was used to identify multinucleated osteoclast-like cells. The most dominant compounds measured in the conditioned media from interface membranes were tumor necrosis factor alpha (TNFalpha), monocyte chemoattractant protein 1 (MCP-1), interleukin-1beta (IL-1beta), IL-6, IL-8, and vascular endothelial growth factor. Fibroblasts phagocytosed particulate wear debris and responded to cytokine/chemokine stimulation. The most prominent up-regulated genes and proteins secreted by fibroblasts in response to stimulation were matrix metalloproteinase 1, MCP-1, IL-1beta, IL-6, IL-8, cyclooxygenase 1 (COX-1), COX-2, leukemia inhibitory factor 1, transforming growth factor beta1 (TGFbeta1), and TGFbeta receptor type I. In addition, interface membrane fibroblasts expressed RANKL and osteoprotegerin in response to stimulation with conditioned media, TNFalpha, or IL-1beta. Stimulated fibroblasts cocultured with bone marrow cells in the presence of macrophage colony-stimulating factor induced osteoclastogenesis. Interface membrane fibroblasts respond directly to particulate wear debris, possibly via phagocytosis, expressing proinflammatory cytokines and RANKL. Thus, these cells may be actively involved in osteoclastogenesis and pathologic (periprosthetic) bone resorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.