Abstract

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) will become one of the world-leading telescopes for pulsar timing array (PTA) research. The primary goals for PTAs are to detect (and subsequently study) ultra-low-frequency gravitational waves, to develop a pulsar-based time standard and to improve solar system planetary ephemerides. FAST will have the sensitivity to observe known pulsars with significantly improved signal-to-noise ratios and will discover a large number of currently unknown pulsars. We describe how FAST will contribute to PTA research and show that jitter- and timing-noise will be the limiting noise processes for FAST data sets. Jitter noise will limit the timing precision achievable over data spans of a few years while timing noise will limit the precision achievable over many years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.