Abstract

BackgroundSignificant mortality and morbidity in pregnant women and their offspring are linked to premature rupture of membranes (PROM). Epidemiological evidence for heat-related PROM risk is extremely limited. We investigated associations between acute heatwave exposure and spontaneous PROM. MethodsWe conducted this retrospective cohort study among mothers in Kaiser Permanente Southern California who experienced membrane ruptures during the warm season (May-September) from 2008 to 2018. Twelve definitions of heatwaves with different cut-off percentiles (75th, 90th, 95th, and 98th) and durations (≥ 2, 3, and 4 consecutive days) were developed using the daily maximum heat index, which incorporates both daily maximum temperature and minimum relative humidity in the last gestational week. Cox proportional hazards models were fitted separately for spontaneous PROM, term PROM (TPROM), and preterm PROM (PPROM) with zip codes as the random effect and gestational week as the temporal unit. Effect modification by air pollution (i.e., PM2.5 and NO2), climate adaptation measures (i.e., green space and air conditioning [AC] penetration), sociodemographic factors, and smoking behavior was examined. ResultsIn total, we included 190,767 subjects with 16,490 (8.6%) spontaneous PROMs. We identified a 9–14% increase in PROM risks associated with less intense heatwaves. Similar patterns as PROM were found for TPROM and PPROM. The heat-related PROM risks were greater among mothers exposed to a higher level of PM2.5 during pregnancy, under 25 years old, with lower education and household income level, and who smoked. Even though climate adaptation factors were not statistically significant effect modifiers, mothers living with lower green space or lower AC penetration were at consistently higher heat-related PROM risks compared to their counterparts. ConclusionUsing a rich and high-quality clinical database, we detected harmful heat exposure for spontaneous PROM in preterm and term deliveries. Some subgroups with specific characteristics were more susceptible to heat-related PROM risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.