Abstract

Impaired wound healing is one of the unsolved problems of modern medicine, affecting patients’ quality of life and causing serious economic losses. Impaired wound healing can manifest itself in the form of chronic skin wounds or hypertrophic scars. Research on the biology and physiology of skin wound healing disorders is actively continuing, but, unfortunately, a single understanding has not been developed. The attention of clinicians to the biological and physiological aspects of wound healing in the skin is necessary for the search for new and effective methods of prevention and treatment of its consequences. In addition, it is important to update knowledge about genetic and non-genetic factors predisposing to impaired wound healing in order to identify risk levels and develop personalized strategies for managing such patients. Wound healing is a very complex process involving several overlapping stages and involving many factors. This thematic review focuses on the extracellular matrix of the skin, in particular its role in wound healing. The authors analyzed the results of fundamental research in recent years, finding promising potential for their transition into real clinical practice.

Highlights

  • The ability of tissues to recover after damage is one of the fundamental properties of all organisms that underlies the maintenance of the body’s homeostasis [1]

  • The skin is a more accessible organ than others for experiments in animals and humans; most of the fundamental research in the field of regenerative biology aimed at studying the mechanisms of repair is carried out on the skin, with the subsequent comparison of the results obtained with the mechanisms of regeneration in other epithelial–mesenchymal organs

  • Whereas the usual arrangement of fibrillar collagen fibers in the skin is in the form of a network, in scar tissue, fibrillar collagen accumulates in large quantities in the form of thick bundles running parallel to the length of the tissue

Read more

Summary

Introduction

The ability of tissues to recover after damage is one of the fundamental properties of all organisms that underlies the maintenance of the body’s homeostasis [1]. All living organisms have mechanisms for tissue restoration after tissue damage, while in most vertebrates in the postembryonic period, healing occurs through scar formation [2]. Fetal wounds can fully restore the integrity, biomechanics, and function of tissues, with the best regenerative wound healing. Wounds in adults are not capable of complete regeneration, and the wound surface is replaced by scar tissue. With the formation of scar tissue, fibrillar collagen accumulates, with a prolonged inflammatory process or impaired neovascularization. Whereas the usual arrangement of fibrillar collagen fibers in the skin is in the form of a network, in scar tissue, fibrillar collagen accumulates in large quantities in the form of thick bundles running parallel to the length of the tissue

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.