Abstract

A wound chamber model was used for the study of the interaction between axon, Schwann cell and extracellular matrix during peripheral nerve regeneration. Impermeable silicone tubes, 8 mm long and 1.4 mm in internal diameter were sutured to transected rat sciatic nerve and the contents of the tubes were removed at intervals for chemical, histological, immunocytochemical and electron microscopic studies. There was an initial phase of fluid accumulation and the formation of a fibrin/fibronectin clot or cable which connected the cut ends of the nerve. The chamber fluid was shown to have a protein profile similar to that of rat serum. Schwann cells, endothelial cells and fibroblasts migrated first into the cable, apparently mediated by cell-fibrin interaction. Axons buried within the Schwann cell cytoplasm were led into the cable but an axon-fibrin interaction was not observed. After 1 week, the fibrin matrix underwent dissolution, with replacement by collagen. This marked the onset of myelination and the organization of nerve fibers into fascicles. The findings from the present study suggest that the interactions between axon and Schwann cell and between Schwann cell and a changing extracellular matrix are the essential driving force in nerve growth and differentiation during peripheral nerve regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.