Abstract

Neurodegenerative diseases including Alzheimer's disease and Parkinson's disease are aging-associated diseases with irreversible damage of brain tissue. Oxidative stress is commonly detected in neurodegenerative diseases and related to neuronal injury and pathological progress. Exosome, one of the extracellular vesicles, is demonstrated to carry microRNAs (miRNAs) and build up a cell-cell communication in neurons. Recent research has found that exosomal miRNAs regulate the activity of multiple physiological pathways, including the oxidative stress response, in neurodegenerative diseases. Here, we review the role of exosomal miRNAs and oxidative stress in neurodegenerative diseases. Firstly, we explore the relationship between oxidative stress and neurodegenerative diseases. Secondly, we introduce the characteristics of exosomes and roles of exosome-related miRNAs. Thirdly, we summarized the crosstalk between exosomal miRNAs and oxidative stress in neurodegenerative diseases. Fourthly, we discuss the potential of exosomes to be a biomarker in neurodegenerative diseases. Finally, we summarize the advantages of exosome-based delivery and present situation of research on exosome-based delivery of therapeutic miRNA. Our work is aimed at probing and reinforcing the recognition of the pathomechanism of neurodegenerative diseases and providing the basis for novel strategies of clinical diagnosis and treatment.

Highlights

  • The incidence of neurodegenerative diseases, which include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), has been shooting up due to the extended lifespan and environment pollution

  • De Felice et al [154] suggested that miR-338-3p was increased in peripheral leukocytes, serum, and cerebrospinal fluid (CSF) from sporadic ALS patients and considered the miRNA to be a potential biomarker for early diagnosis of sporadic ALS [149]

  • In the past decades since exosomes and miRNAs were found in neurons, researchers have tried to explain cell-cell communication in central nervous system (CNS) with an exosome cargo system

Read more

Summary

Introduction

The incidence of neurodegenerative diseases, which include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), has been shooting up due to the extended lifespan and environment pollution. Exosomes will transfer to specific targets such as immune cells or the central nervous system (CNS) to exert pleiotropic effects [8, 9]. In this context, exosomes can take part in many biological processes and set up intracellular communication among cells, which makes them important in diverse diseases, e.g., immunological diseases, tumorigenesis, and neurodegenerative diseases [10]. Exosome-derived miRNAs have the potential to interact with oxidative stress response during the neurodegenerative processes [16]. This review attempts to briefly summarize the potential advantage of exosomal miRNA-based management in the treatment and diagnosis of neurodegenerative diseases

Oxidative Stress and Neurodegenerative Diseases
Exosomes and Exosome-Associated miRNA
Exosomal miRNAs
Aβ mHtt α-syn
Exosomal miRNAs as Biomarkers
Conclusion and Perspectives
Findings
Conflicts of Interest
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call