Abstract

Atomic photoionization cross sections are calculated by time-dependent density-functional (TDDF) methods using different exchange-correlation potentials including the exact one. The exchange-correlation kernel is treated in the adiabatic local density approximation (ALDA). Results for the exact full and the exact exchange-only Kohn–Sham (KS) potential are very similar, the calculated photo cross section agree very well with experimental data. Thus the exact correlation potential seems to have no influence on photoionization and the ALDA for the exchange-correlation kernel seems to be sufficient for most features of the cross sections. The TDDF method employing the exact exchange-only KS potential in combination with the ALDA exchange-correlation kernel therefore is a promising approach to describe photoionization. Deviations from experiment are observed for the widths and shape of the autoionization resonances and have to be attributed to deficiencies of the ALDA exchange-correlation kernel. The calculation of widths and shapes of autoionization resonances therefore may serve as a severe test for new approximate exchange-correlation density-functionals. The asymptotically exact exchange-correlation potential of van Leeuwen and Baerends also leads to quite good photo cross section, which, however, shows deficiencies close to the ionization threshold and in the energetic position of the autoionization resonances. Supplementation of the exact exchange potential with the LDA correlation potential leads to a worsening of the photo cross section because the LDA correlation potential is too attractive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.