Abstract

The observed sequence of events leading to the onset of the summer monsoon in the South China Sea (SCS) is described, with a particular focus on conditions during the South China Sea monsoon experiment (SCSMEX) in May–June 1998. During SCSMEX, SCS monsoon onset occurred within the context of a multitude of scale interactions within the ocean-atmosphere system on intraseasonal time scales. Results from the 1998 SCSMEX case study illustrate that SCS monsoon onset is preceded by the development of an eastward-propagating Madden-Julian Oscillation (MJO) in the Indian Ocean, as suggested by previous authors, and the subsequent emanation of a convectively coupled Kelvin wave into the Pacific. Remarkably similar results are obtained in an independent composite of 25 years of data. Since both the MJO and Kelvin waves generate westerly surface winds in their wake, it is suggested that these waves may accelerate or trigger the monsoon onset process in the southern SCS. A detailed analysis of the Kelvin wave that propagated through the SCS during SCSMEX shows that it was responsible for a large portion of the surface wind shift leading to monsoon onset in 1998. Finally, easterly wind anomalies in the eastern Pacific associated with the Indian Ocean MJO event during the SCSMEX period are shown to result in the sudden demise of the 1997–1998 El Niño event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call