Abstract
BackgroundNothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes.ResultsAccording to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L−1. Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity.ConclusionsWe have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.
Highlights
Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters
Our aim was to study the structure of microbial communities of saline lakes of the Novosibirsk region using fluorescent in situ hybridization and microscopy, as well as the effect of physical-chemical parameters of waters on microbial communities of these lakes using principal components analysis and two-block partial least squares
We suggest that the structure of microbial communities of saline lakes of the Novosibirsk region is determined by physical-chemical parameters of waters, most significantly by salinity
Summary
Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes. Over the last decades FISH has been used to study microbial communities of oceanic plankton and benthos, coral reefs and deep-sea vents, wastewater, activated sludge, and freshwater sediments [4,5,6,7,8,9,10]. In Russia, only a few microbial communities of some large freshwater and brackish water reservoirs (lakes Baikal, Shira, and Shunet, delta of the Selenga river, the Black sea) have been studied using this method [11,12,13]. The area is a hilly terrain, and this topography spreads as far as the present Arctic seas being produced either by wind erosion [14] or by tectonic uplift [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.