Abstract

In the salivary glands, fibrosis occurs in many pathological conditions. Endothelial tight junction (TJ)–based barrier function plays a vital role in maintaining the homeostasis of the salivary glands. However, whether endothelial barrier function is changed and involved in the pathogenesis of glandular fibrosis is unknown. Here, by using a mouse model in which the main excretory duct of the submandibular gland (SMG) was ligated to induce inflammation and fibrosis, endothelial barrier function and TJ protein expression and distribution were examined. Both 4-kDa and 70-kDa fluorescence-labeled dextrans permeated more in the 1-, 3-, and 7-d ligated SMGs. Meanwhile, the mRNA level of claudin-5 was increased with an obvious redistribution from apicolateral membranes to lateral membranes and cytoplasm in the fibrotic glands. Notably, the TJ sealer AT1001 significantly attenuated the disrupted endothelial barrier function and thereby ameliorated the glandular fibrosis. Cytokine array detection showed that monocyte chemoattractant protein–1 (MCP-1) was highly enriched in the 3-d ligated SMGs, and MCP-1 directly impaired barrier function, increased claudin-5 expression, induced the relocalization of claudin-5, and activated p-ERK1/2 in cultured human endothelial cells. Furthermore, the upregulation and disorganization of claudin-5 as well as the elevation of MCP-1 and p-ERK1/2 signaling were also confirmed in fibrotic SMGs from patients with chronic sialadenitis and immunoglobulin G4–related sialadenitis. Altogether, our findings revealed that disrupted endothelial barrier function contributed to the progression of glandular fibrosis, and targeting endothelial TJs might be a promising approach to alleviate salivary gland fibrosis-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.