Abstract
BackgroundDepression is a common mental disease, accompanied by anxiety and persistent depression. Endophilin A1 (EPA1) is a brain-specific protein enriched in synaptic terminals that is primarily expressed in the central nervous system. It has been reported that EPA1 is involved in neurotransmitter release, which indicates that the protein may be involved in depression. However, it is unclear whether EPA1 is implicated in the development of depression. MethodsThe mice depression model was established by chronic unpredicted mild stress (CUMS). Depression-like behaviors were detected by sucrose preference test (SPT), forced swim test (FST), tail-suspension test (TST) and open-field test (OFT). Neuronal histopathology was applied by hematoxylin and eosin stain (H&E), and Nissl stain. EPA1, NLRP1 inflammatory complexes, NADPH oxidase2 (NOX2), synaptic-related protein expression of the mice were tested by western blot. Immunofluorescence was applied to detect the expression of EPA1 and ROS in mice hippocampus. EPA1 knockdown was performed by an adeno-associated virus (AAV) vector containing EPA1-shRNA-EGFP infusion. ResultCUMS exposure induced depressive-like behaviors and increased the expression of EPA1 in the hippocampus. Knockdown hippocampal EPA1 ameliorated CUMS-induced depressive-like behaviors, decreased calcium (Ca2+) overload, decreased ROS generation and NOX2 expression, inhibited NLRP1 inflammasome-driven neuroinflammation, and restored the levels of BDNF, PSD95, GAP-43, SYN, and MAP-2 in the hippocampus. ConclusionEPA1 contributes to CUMS induced depressive-like behaviors and the mechanism may be related to NLRP1 inflammasome-driven inflammatory response, regulating calcium ion homeostasis and ROS generation, and alleviating synaptic function damage. This indicated that EPA1 may participate in the occurrence and development of depression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.