Abstract
Endogenous hydrogen sulfide is produced by cystathionine-γ-lyase and cystathionine-β-synthase in a variety of tissues and has recently been implicated in the regulation of cardiac functions. Acceleration of the heart rate in response to catecholamines is impaired in patients with cirrhosis. The present study was aimed to examine the role of endogenous hydrogen sulfide in the pathogenesis of chronotropic dysfunction in rats with cirrhosis. Cirrhosis was induced by surgical ligation of bile duct in rats. There was no significant difference in atrial cystathionine-γ-lyase and cystathionine-β-synthase mRNA levels in control and cirrhotic rats as assessed by quantitative RT-PCR. Four weeks after bile duct ligation or sham surgery the atria were isolated and chronotropic responsiveness to adrenergic stimulation was assessed using standard organ bath. Incubation of the atria with propargylglycine (PAG, a cystathionine-γ-lyase inhibitor) and amino-oxyacetic acid (AOAA, a cystathionine-β-synthase inhibitor) was associated with a significant desensitization of chronotropic response to adrenergic stimulation in controls rats. This indicates that endogenous hydrogen sulfide might be involved in modulation of adrenergic signaling in the atrium. Bile duct ligation was associated with impaired chronotropic responsiveness to adrenergic stimulation in comparison with sham-operated rats. In contrast to control group, incubation of the atria with PAG and AOAA was able to partially improve the chronotropic responsiveness to adrenergic stimulation in cirrhotic rats. Our data shows that local inhibition of endogenous hydrogen sulfide in atria has opposite effect in cirrhotic versus control rats and may play a role in physiological modulation of adrenergic signaling in the atrium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.